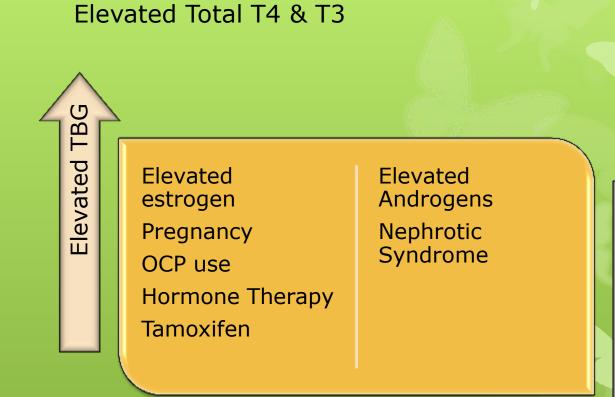
Thyroid Disorders

Michael D. Rosario, MD Diabetes, Thyroid, Endocrinology and Metabolism

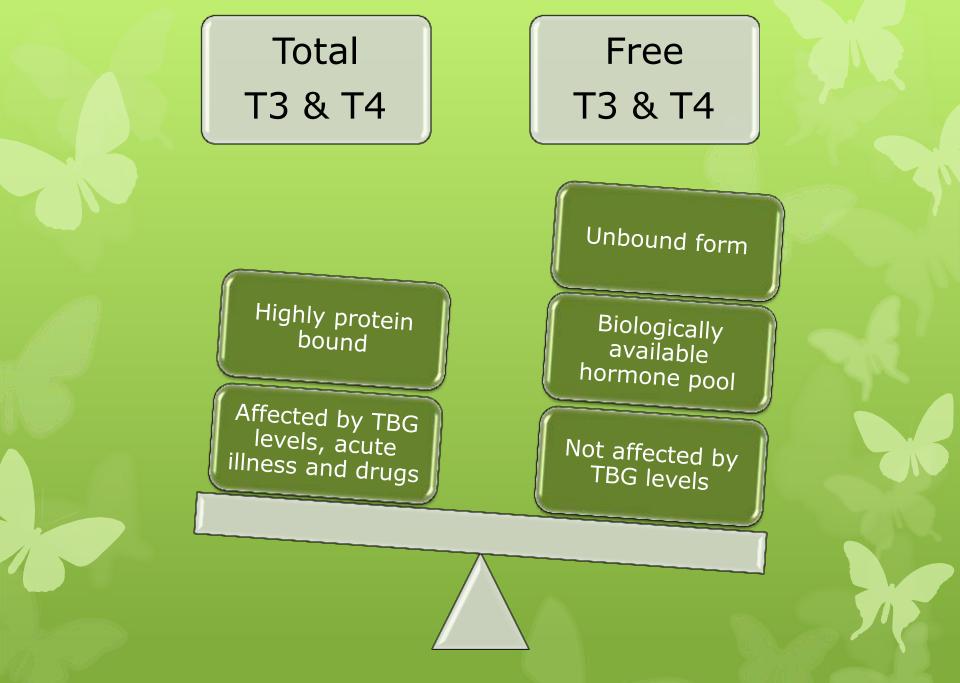
Outline


- Diagnostic Tests
- Hyperthyroidism
- Hypothyroidism
- Thyroiditis
- **O** Goiter
- Thyroid Cancer

Diagnostic Tests

Thyroid Function Tests • TSH

 Total Hormones (Total T3 & Total T4)


 Free
 Hormones
 (Free T3 and Free T4)

Decreased Total T4 & T3

Decreased

TBG

Measurement of the free unbound hormones are preferable

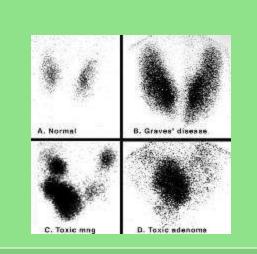
Thyroid patterns

Thyroid Disorder	TSH	Free T4	Total T4	Signs and Symptoms
Hyperthyroidism	Low	High	High	Present
Subclinical Hyperthyroidism	Low	Normal	Normal	Absent
Isolated T3 Toxicosis	Low	Normal	High	Present
Primary Hypothyroidism	High	Low	Low	Present
Secondary Hypothyroidism	Low or Inappropriately Normal	Low	Low	Absent/Present
Subclinical Hypothyroidism	High	Normal	Normal	Absent
Increased TBG	Normal	Normal	Increased	Absent
Decreased TBG	Normal	Normal	Decreased	Absent

Thyroid Proteins & Antibodies • Thyroglobulin (Tg)

- Follow up of thyroid cancer
- To rule out thyrotoxicosis factitia
- Elevated in thyroiditis
- Antibodies to thyroid proteins
 - Anti thyroglobulin (Anti Tg)
 - Follow up of thyroid cancer patients
 - Autoimmune thyroid illness (not routinely included)
 - Anti Thyroid Peroxidase (Anti TPO)
 - Autoimmune thyroid illness
 - Anti TSH receptor (TRAB)
 - TSH stimulating Hyperthyroidism
 - TSH blocking Hypothyroidism

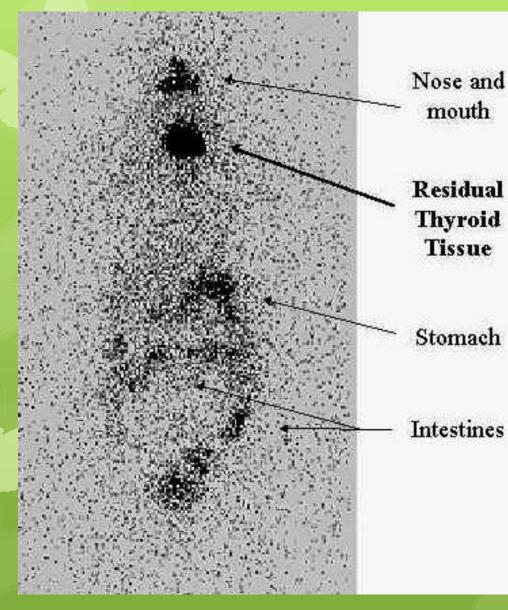
Patient Group	TSH receptor Antibody	Thyroglobulin (Tg) Antibody	Thyroid Peroxidase (TPO) Antibody
General Population	0%	5-20%	8-27%
Grave's Disease	80-95%	50-70%	50-80%
Autoimmune thyroiditis	10-20%	80-90%	90-100%


Radionuclide Imaging

The thyroid gland selectively transports radioisotopes of iodine (123I, 125I, 131I) and 99mTc pertechnetate, allowing thyroid imaging and quantitation of radioactive tracer fractional uptake.

Imaging

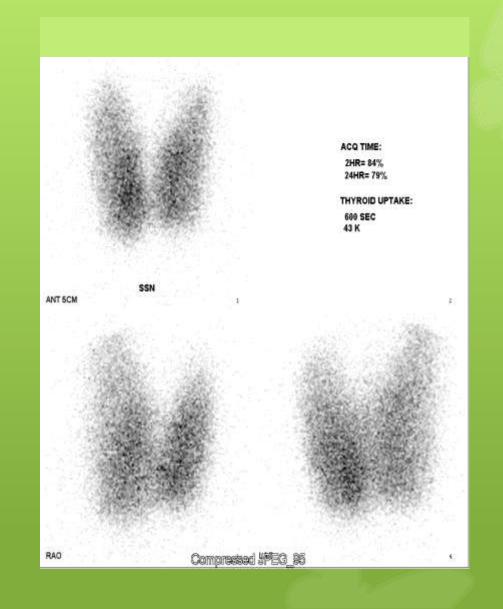
Thyroid Uptake Thyroid Scan


- Iodine uptake measures thyroid function
- High in Graves' Disease
- Low in Thyroiditis (hyperthyroid phase)

Whole Body Scan

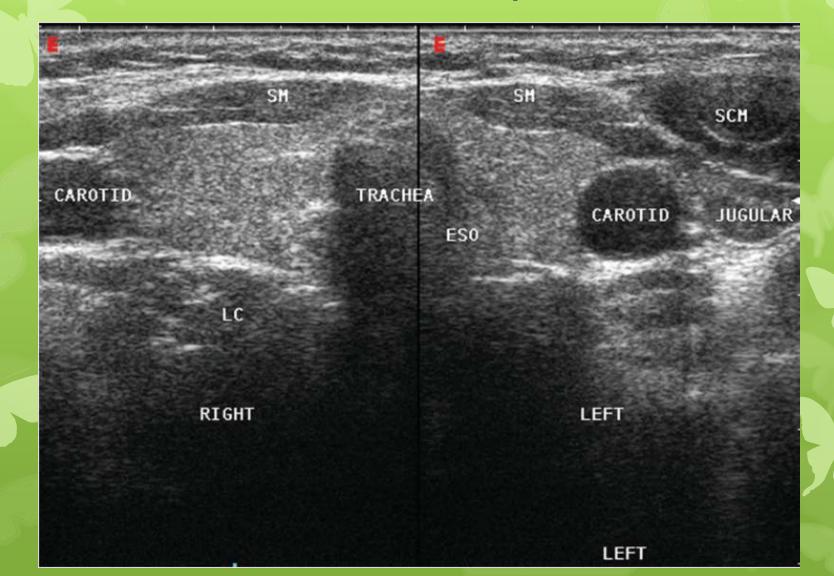
• Follow up in Thyroid Cancer

Radionuclide Imaging: Whole Body Scan

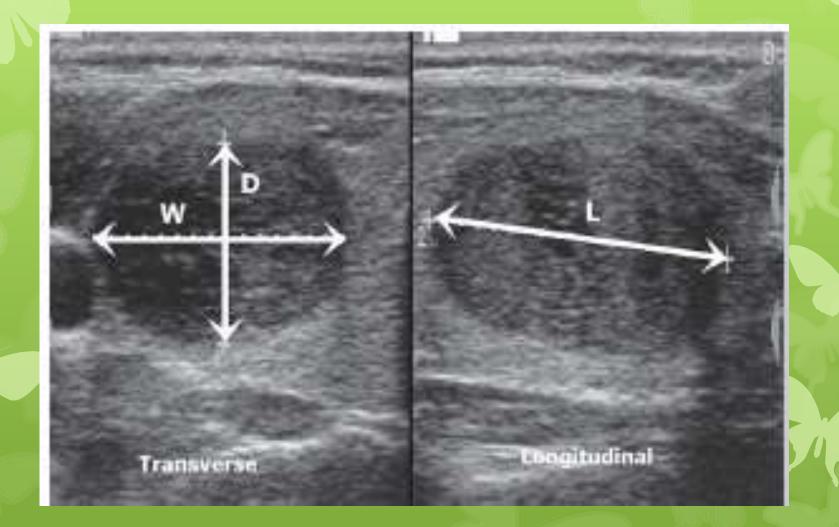


The uptake in the thyroid tells the consultant how much working tissue has been left after surgery.

The appearance of nose, mouth, stomach and intestines is normal.

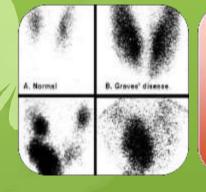

This scan does not suggest that any of the thyroid cancer has formed growths elsewhere in the body (called metastases).

Radionuclide Imaging: Thyroid Uptake



Ultrasound of the Thyroid

Ultrasound of the Thyroid


Hyperthyroidism

Definition of Terms

Thyrotoxicosis

• State of thyroid hormone excess

Hyperthyroidism

 Thyrotoxicosis due to excessive thyroid function

Signs and Symptoms

TABLE 335-7

SIGNS AND SYMPTOMS OF THYROTOXICOSIS (DESCENDING ORDER OF FREQUENCY)

Symptoms

Hyperactivity, irritability, dysphoria Heat intolerance and sweating Palpitations Fatigue and weakness Weight loss with increased appetite Diarrhea Polyuria Oligomenorrhea, loss of libido

Signsa

Tachycardia; atrial fibrillation in the elderly Tremor Goiter Warm, moist skin Muscle weakness, proximal myopathy Lid retraction or lag Gynecomastia

"Excludes the signs of ophthalmopathy and dermopathy specific for Graves' disease.

Suspected Hyperthyroidism?

Measure TSH and Free T4 (FT4)

Hypothalamus

TSH NORMAL OR HIGH

Pituitary gland

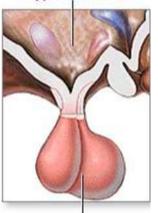
TSH Dependent Cause

TSH Secreting Pituitary Adenoma

- Pituitary MRI
- Transphenoidal Surgery
- Thyroid Ablation/Anti thyroids
- Somatostatin Analogues

TSH Independent Cause

Thyroid Hormone Resistance Syndrome



Suspected Hyperthyroidism?

Measure TSH and Free T4 (FT4)

Hypothalamus

TSH LOW

Pituitary gland

Free T4 NORMAL

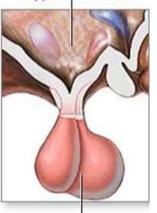
Check Free T3 (FT3)

Free T3 High

Isolated T3 Toxicosis

- 2-5%
- Treat as Hyperthyroidism

Free T3 Normal


Subclinical Hyperthyroidism

 Repeat Thyroid function after a few months and watch out for Overt Hyperthyroidism

Suspected Hyperthyroidism?

Measure TSH and Free T4 (FT4)

Hypothalamus

TSH LOW

Pituitary gland

Free T4 HIGH

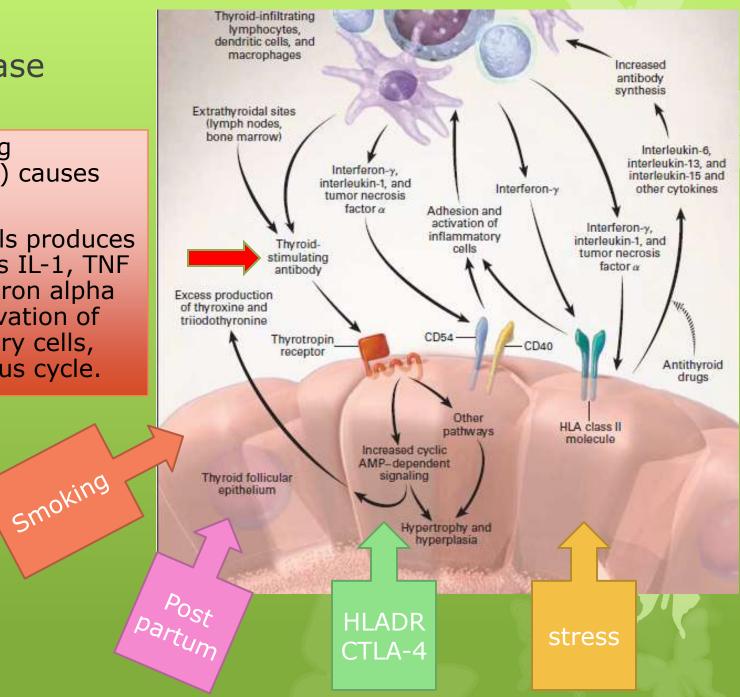
Thyroid Scan & Uptake

Diffuse Uptake

Graves' Disease Chorionic Gonadotropin Induced Hyperthyrodisim

Increased Nodular Uptake

Toxic Nodular Goiter


Decreased Uptake

- Thyroiditis
- Iatrogenic hyperthyroidism
- Struma ovarii

Graves' Disease Pathogenesis

TSH-R stimulating antibodies (TRAB) causes hyperthyroidism

Inflammatory cells produces Cytokines such as IL-1, TNF alpha and Interferon alpha that triggers activation of other inflammatory cells, leading to a vicious cycle.

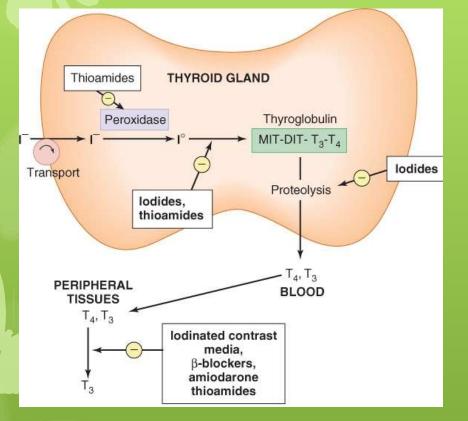
Medical treatment

Thionamides: Propylthiouracil Methimazole High risk of

recurrence

Adverse effects: Hepatotoxicity, Agranulocytosis

- Subtotal or Near
- total thyroidectomy
- Surgery **Risks of thyroid**
 - surgery:
 - hypothyroidism, damage to recurrent laryngeal nerve, hypoparathyroidism


- Non invasive -Φ
 - capsule or liquid
 - form
- Iodin Radiation Thyroiditis
 - Avoid in pregnancy or breastfeeding
 - Avoid in children
 - Risk of

Radioactive

hypothyroidism

May worsen ophthalmopathy

THIONAMIDES

- Inhibits oxidative process required for iodination of tyrosine groups
- Inhibits coupling of iodotyrosines to form T3 and T4
- PTU blocks peripheral conversion of T4 to T3

Methimazole vs Propylthiouracil

Table 1

Comparison of characteristics of the thionamides methimazole and propylthiouracil in the treatment of Graves' disease

Characteristic	Methimazole	Propylthiouracil
Relative potency	10–50	1
Administration	Oral	Oral
Absorption	Nearly complete	Nearly complete
Binding to serum proteins	Negligible	80%-90%
Serum half-life (hours)	4–6	1–2
Volume of distribution (L)	40	20
Duration of action (hours)	> 24	12–24
Metabolism during liver disease	Decreased	Normal
Metabolism during kidney disease	Normal	Normal
Transplacental passage	Low	Even lower
Level in breast milk	Low	Even lower
Inhibition of T4/T3 conversion	No	Yes
Dosing ^a	1–2 times daily	2–3 times daily

Hegedus, Treatment of Graves Disease: Evidence Based and Emerging Modalities; Endocrinol Metab Clin N Am 38 (2009) 355–371

THIONAMIDE USE

Drug initiation

Monitoring

Phase

 Monitor thyroid function every month 1st 3 months

- Decreased nervousness, palpitations
- 2 weeks Increased strength and weight gain
 - •Normalization of metabolic state
- 6 weeks Start dosage reductions

Maintenance dose: 5-10 mg MMI or 100-200 mg PTU
Monitor TFT q2-3 mos

- Thyroid Gland Size
 - Decrease 1/3-1/2
 - Unchanged or enlarged remaining half
- Thyoid Function Tests pattern
 - TSH may remain subnormal for 6 months

Lithium

Alternative to thionamides

Iodine

- Saturated solution of Potassium Iodide (SSKI), ipodate, iopanoic acid
- Wolff- Chaikoff effect
- Thyroid storm (give 1 hour after thionamides)
- Decrease vascularity pre-op

Steroids

• Thyroid storm

Beta Blockers

- Adjunct to treatment
- to control adrenergic symptoms, especially in the early stages before antithyroid drugs take effect

THYROID STORM

Burch Wartofsky Score

- Temperature
- CNS
- GIT-Hepatic Dysfunction
- CVS
 - Tachycardia
 - CHF
 - Atrial Fibrillation

> 45 Thyroid Storm

25-44 Impending < 25 Unlikely

Diagnostic parameters	Scoring point
Thermoregulatory dysfunction	
Temperature	
99-99.9	5
100-100.9	10
101-101.9	15
102-102.9	20
103-103.9	25
≥104.0	30
Central nervous system effects	
Absent	0
Mild (agitation)	10
Moderate (delirium, psychosis, extreme lethargy	20
Severe (seizures, coma)	30
Gastrointestinal-hepatic dysfunction	
Absent	0
Moderate (diarrhea, nausea/vomiting, abdominal pain)	10
Severe (unexplained jaundice)	20
Cardiovascular dysfunction	
Tachycardia (beats/minute)	
90-109	5
110-119	10
120-129	15
\geq 140	25
Congestive heart failure	
Absent	0
Mild (pedal edema)	5
Moderate (bibasilar rales)	10
Severe (pulmonary edema)	15
Atrial fibrillation	
Absent	0
Present	10
Precipitating event	
Absent	0
Present	10

Scoring system: A score of 45 or greater is highly suggestive of thyroid storm; a score of 25-44 is suggestive of impending storm, and a score below 25 is unlikely to represent thyroid storm.

-	50 ¹⁰	Mechanism	
Medication	Dosage	of action	Conditions of use
I. Inhibition of new ho			
Propylthiouracil	200-400 mg po q 6-8 h ^a	Inhibits new hormone synthesis; decreases T4-to-T3 conversion	First-line therapy
Methimazole	20–25 mg po q 6 h ^a	Inhibits new hormone synthesis	First-line therapy
II. Inhibition of thyroi	d hormone release	synthesis	
Potassium iodide ^b SSKI	5 drops po q 6 h	Blocks release of hormone from gland	Administer at least 1 hr after thionamide
Lugol's solution ^b	4–8 drops po q 6–8 h	Blocks release of hormone from gland	Administer at least 1 hr after thionamide
Sodium ipodate ^c (308 mg iodine/ 500 mg tab)	1–3 g po qd	Blocks release of hormone from gland; inhibits T4-to-T3 conversion	Administer at least 1 h after thionamide
Iopanoic acid ^e	1 g po q 8 h for 24 h, then 500 mg po q 12 h	Blocks release of hormone from gland; inhibits T4-to-T3 conversion	Administer at least 1 h after thionamide
III. Beta-adrenergic bl	ockade		
Propranolol Cardioselective ageni	60-80 mg po q 4 h or 80-120 mg q 6 h	Beta-adrenergic blockade; decreases T4-to-T3 conversion	
Atenolol	50-200 mg po qd	Beta-adrenergic	Use when
Action	50-200 mg po qu	blockade	cardioselective agents preferred
Metoprolol Nadolol Intravenous agent:	100-200 mg po qd 40-80 mg po qd		
Esmolol	50–100 μg/kg/min	Beta-adrenergic blockade	Use when oral agents contraindicated; Consider use in heart failure

Medication	Dosage	Mechanism of action	Conditions of use
IV. Supportive treatr	nent		
Acetaminophen	325–650 po/pr q 4–6 h as needed	Treatment of hyperthermia	Preferred treatment over salicylates
Hydrocortisone	100 mg IV q 8 h	Decreases T4-to-T3 conversion; vasomotor stability	Use when patient hypotensive to treat possible concomitant adrenal insufficiency
V. Alternative Thera	pies		
Lithium carbonate	300 mg po q 8 h ^d	Blocks release of hormone from gland; inhibits new hormone synthesis	Used when thionamide or iodide therapy is contraindicated; lithium levels should be checked regularly
Potassium perchlorate	1 g po qd	Inhibits iodide uptake by thyroid gland	Used in combination with thionamide in treatment of Type II amiodarone- induced thyrotoxicosis
Cholestyramine	4 g po qid	Decreases reabsorption of thyroid hormone from enterohepatic circulation	Used in combination with thionamide therapy

Hypothyroidism

Clinical Manifestations

TABLE 335-5 SIGNS AND SYMPTOMS OF HYPOTHYROIDISM (DESCENDING ORDER OF FREQUENCY)

Symptoms

Tiredness, weakness Dry skin Feeling cold Hair loss Difficulty concentrating and poor memory Constipation Weight gain with poor appetite Dyspnea Hoarse voice Menorrhagia (later oligomenorrhea or amenorrhea) Paresthesia Impaired hearing

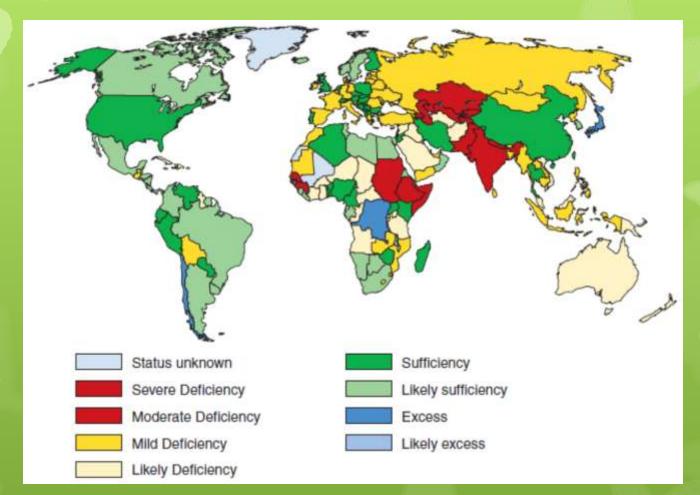
Signs

Dry coarse skin; cool peripheral extremities Puffy face, hands, and feet (myxedema) Diffuse alopecia Bradycardia Peripheral edema Delayed tendon reflex relaxation Carpal tunnel syndrome Serous cavity effusions

Iodine Deficiency

- Most common cause of hypothyroidism WORLDWIDE
- Most common cause of preventable mental deficiency
 - Mild deficiency can lead to subtle reduction of IQ
- Prevalent in mountainous regions and in Central Africa, South America and Northern Asia
- The World Health Organization (WHO) estimates that about 2 billion people are iodine-deficient, based on urinary excretion data.
- Manifestations:
 - **O** Goiter
 - Cretinism
 - Mental and growth retardation in children living in iodine deficient regions

Iodine Deficiency Disorders



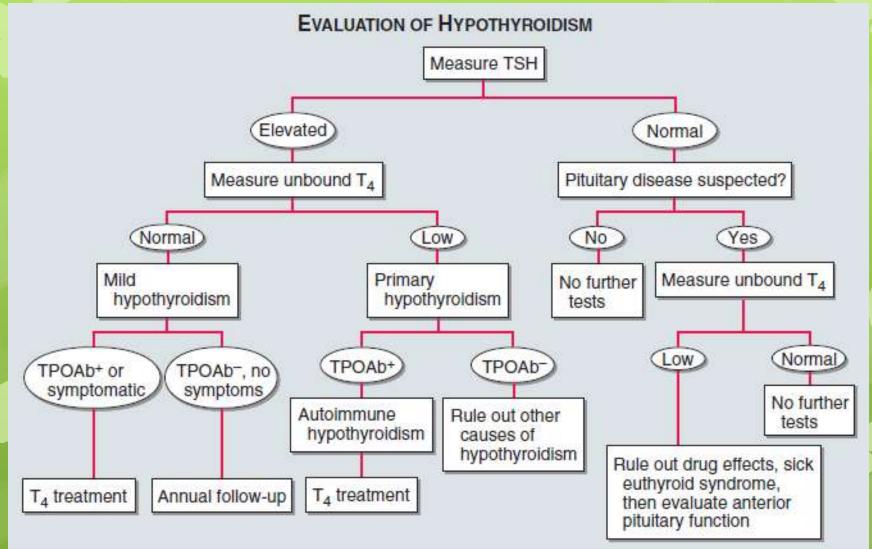
Goiter

Cretinism

Iodine Deficiency

Iodine Deficiency

- Recommended Daily Intake
 - Children 90-120 ug/d
 - Adults 150 ug/d
 - Pregnant 200 ug/d
- Oversupply of iodine, through supplements or foods can also worsen pre existing thyroid disease


Table 1. Common Sources of Dietary Iodine

Breads Cheese Cow's milk Eggs Frozen yogurt Ice cream Iodine-containing multivitamins Iodized table salt Saltwater fish Seaweed (including kelp, dulce, nori) Shellfish Soy milk Soy sauce Yogurt

FIDEL – Fortification for Iodine Deficiency Elimination

Autoimmune Hypothyroidism

Autoimmune Hypothyroidism

Histology	Hashimoto's or Goitrous thyroiditis	Atrophic Thyroiditis
Lymphocyte infiltration	Marked lymphocytic infiltration with germinal cell formation	Less pronounced
Thyroid follicles	Atrophy of thyroid follicles with absent colloid	Almost completely absent
Fibrosis	Mild to moderate	Extensive
		Overt
	Subclinical	Nr.

Autoimmune Hypothyroidism

- Lymphocytic infiltration: CD4+, CD8+, B cells
 - Thyroid cell destruction is primarily mediated by the CD8+ cytotoxic T cells
 - T cells produce cytokines, TNF, IL-1, and interferon have the following effects:
 - may render thyroid cells more susceptible to apoptosis
 - Impair thyroid function directly
 - Induce expression of other pro inflammatory molecules by the thyroid cells themselves.
 - Antibodies to Tg and TPO play secondary role by amplifying an ONGOING autoimmune response
 - 20% have TSH-R blocking antibodies which can cause hypothyroidism and thyroid atrophy

Autoimmune Hypothyroidism

• Genetic factors

- HLA-DR and CTLA-4 polymorphisms account for approximately half of the genetic susceptibility to autoimmune hypothyroidism
- Both of these genetic associations are shared by other autoimmune diseases (type 1 diabetes mellitus, Addison's disease, pernicious anemia, and vitiligo)

• Sex

• Female preponderance: sex steroid effect on immune response vs X chromosome-related genetic factor

• Diet

• A high iodine intake may increase the risk of autoimmune hypothyroidism by immunologic effects or direct thyroid toxicity.

• Infection

- Congenital Rubella syndrome associated with high frequency of autoimmune hypothyroidism
- Viral thyroiditis does not induce subsequent autoimmune thyroid disease

Autoimmune Hypothyroidism

Start Levothyroxine replacement 1.6-1.8 ucg/kg BW (100-150 ucg/day)

Check TSH every 6-8 weeks Adust dose by 12.5 to 25 ucg until TSH goal of Lower Half of Normal Range is achieved

• Special situations:

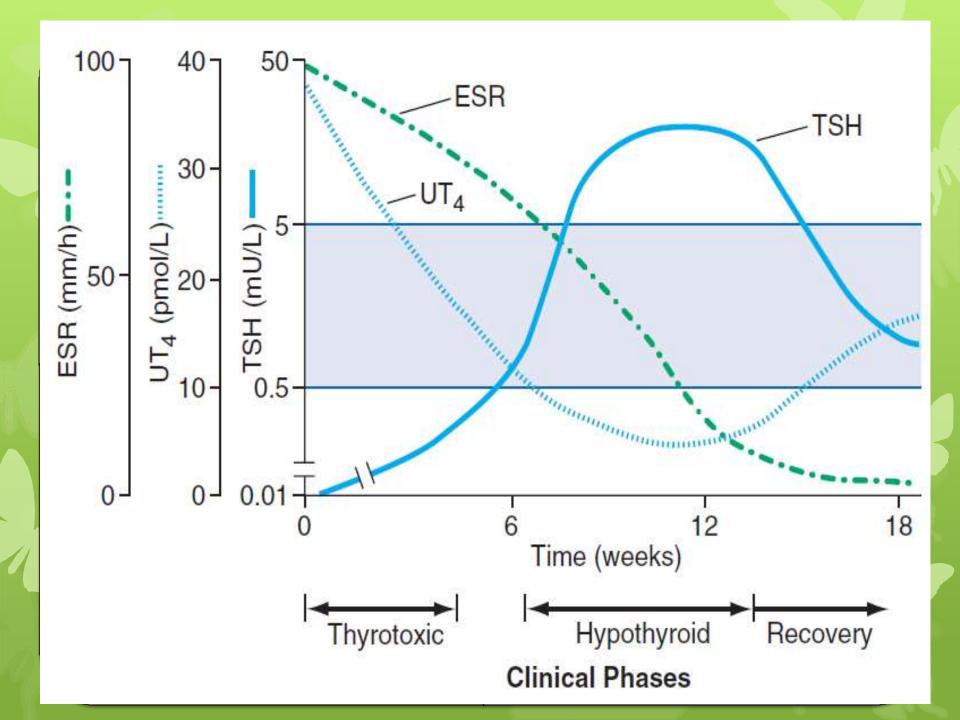
- Pregnancy: higher requirements; need to increase dose by 50% and reduce after delivery
- Elderly, CAD patients: starting dose 12.5 25 ug/day

THYROIDITIS

Rare; Suppurative infection

Associated with piriform sinus in children

Associated with longstanding goiter and degeneration in thyroid cancer in elderly


Laboratories: ESR and WBC elevated Thyroid Function Tests Normal

Acute Thyroiditis

Clinical Manifestations: Painful, tender thyroid With systemic symptoms presenting abruptly (fever, dysphagia)

Treatment:

Antibiotics with Surgical Drainage if necessary

Thyroid Scan: Subacute Thyroiditis

NUCLEAR MED	ICINE	1/13/ 7 3
STUDY 25 1/13/ 7	TEDICAL CENTER, QUEZON CITY CO , J. THYROID 1131 SCAN	0404998
THYROID		
REPORT		
2 HR= 1.5%		
24HR= 1.0%		
ACQ TIME 600SEC	- SSN	

Subacute in duration

Postpartum thyroiditis – 5% of women within 6 months post pregnancy

With underlying autoimmune thyroid disorder

Laboratories: Positive anti – TPO

Normal ESR

Triphasic: thyroid function tests results depending on phase

Silent Thyroiditis

Clinical Manifestations: Painless Symptoms related to phase Shorter phases

Treatment:

Steroids not indicated

Beta Blockers or Levothyroxine as indicated

CHRONIC THYROIDITIS

- Hashimoto's thyroiditis
- Riedel's thyroiditis
 - Rare; occurs in middle aged women
 - Dense extensive fibrosis with no thyroid dysfunction
 - Presents with painless goiter and compressive symptoms
 - Treatment: Surgical relief of compressive symptoms.

GOITER

Diffuse Non Toxic, Colloid Endemic vs Sporadic Iodine Deficiency Inherited Defects in hormone synthesis Goitrogens Cassava root (thiocyanate), Cruciferae fam. (brussels sprouts,cabbage,cauliflower)	Thyroid Function Tests: low T4, normal T3 and TSH TPO antibodies Do PFT and imaging studies if with obstructive symptoms Ultrasound		
	nple iter		
 Women Greater prevalence of autoimmune disease and greater demands of iodine during pregnancy Obstructive Symptoms Substernal Goiter Pemberton's Sign 	Iodine replacement Suppressive therapy with levothyroxine: Best response in young patients and soft goiter; regression seen in 3-6 months Surgery: Subtotal or near total surgery for obstructive symptoms		

Solitary, autonomously functioning thyroid nodule

Most have acquired somatic, activating mutations in the TSH-R leading to enhanced thyroid follicular cell proliferation and function. Less commonly, somatic mutations are identified in Gs

Thyroid scan

Focal uptake in the hyperfunctioning nodule and diminished uptake in the remainder of the gland, as activity of the normal thyroid is suppressed.

Toxic Adenoma

Mild thyrotoxicosis

Radioiodine ablation

131I is concentrated in the hyperfunctioning nodule with minimal uptake and damage to normal thyroid tissue Surgery (enucleation/lobectomy) Ethanol injection Medical treatment is not an optimal long term treatment

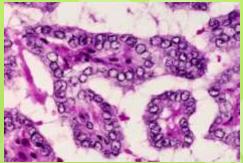
Toxic Adenoma

Multi-Nodular Toxic Goiter

Pathogenesis of toxic MNG appears to be similar to that of nontoxic MNG; the major difference is the presence of functional autonomy in toxic MNG

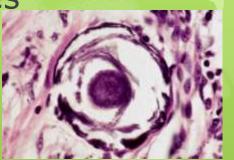
Onset of Hyperthyroidism may have precipitating factor (iodine contrast)

- Low TSH, T4 normal or minimal increase, T3 elevated to a greater degree than T4
- Thyroid scan:


Heterogeneous uptake with multiple regions of increased and decreased uptake; 24-h uptake of radioiodine may not be increased

MNTG

- Goiter
- Subclinical or mild hyperthyroidism
 Elderly presenting with AF, nervousness, tremor or weight loss
- Medical management or Radioiodine does not provide complete control of both goiter and hyperthyroidism
- Surgery provides definitive treatment of underlying thyrotoxicosis as well as goiter.


THYROID CANCER

Most common malignancy of the endocrine system

Well Differentiated

- Classified according to histologic features
 - Differentiated
 - Papillary
 - Most common 70-90%

- Histology: Psammoma bodies, cleaved nuclei with an "orphan-Annie" appearance caused by large nucleoli, and the formation of papillary structures
- Locally invasive

• Follicular

- more common in iodine-deficient regions.
- Difficult to diagnose by FNA because the distinction between benign and malignant follicular neoplasms rests largely on evidence of invasion into vessels, nerves, or adjacent structures
- Hematogenous spread

Treatment of Well Differentiated

Surgery Radioiodine treatment (RAI) Suppressive therapy using Levothyroxine Monitoring

Poorly Differentiated and others

• Poorly Differentiated

- Anaplastic
 - Poor prognosis
 - Poor response to radioiodine treatment
 - Chemotherapy ineffective
- Others
 - Medullary
 - Association with Multiple Endocrine Neoplasia 2
 - Serum calcitonin is a marker of residual or recurrent disease
 - Lymphoma
 - Rapidly expanding thyroid mass
 - Highly sensitive to external radiation

Thank you

www.medclerk.weebly.com